

平成22年6月26日(土)

圧電単結晶の話

- 高温センサ用圧電単結晶材料の探索ー

武田博明

東京工業大学

大学院理工学研究科

ΤΟΚΥΟ ΤΕCH

燃焼圧センサ用単結晶材料の探索

- ▶ 研究背景
- ▶ ランガサイト型結晶の構造と物性
- ▶ 高温材料の探索①
- > 高温材料の探索2
- > 他の候補材料との比較
- > まとめ

*半導体Siなどに機械的外力を加えると抵抗が変化する現象

ランガサイト結晶を用いた燃焼圧センサー

オーダー型結晶とは

C Phononics

ランガサイト型結晶と圧電特性の関係

Ar雰囲気下作製ランガサイト結晶の抵抗率温度特性

10¹⁰ Ω·cm at 400ºCを達成

太子他、圧電材料・デバイスシンポジウム(2005)より

Fig.4 LGT crystals grown in oxygen and inert-gas atmosphere. Electrical resistivity vs. Temperature.

S. A. Sakharovら(FOMOS)、IEEE Ultrasonics symp. (2005)より

eramics Nano

(As Grown)

Langasite結晶 作製条件および密度

種結晶	Langatate
作製速度	2.0 mm/h
回転速度	10 rpm
育成方向	<i>c</i> -axis [001]
結晶密度	$5.743 \pm 0.002 \text{g/cm}^3$
結晶長さ	11.2cm
結晶径	2.5cm

LGAS0.9結晶 作製条件および密度

種 仁 製 速 度 成 密 長 た る 品 品 品 た た た る 品 品 品 た た た た る 品 品 品 し た た た る 品 品 品 品 品 品 品 品 品 品 品 品 品	Langasite 1.5 mm/h 15 rpm <i>c</i> -axis [001] 5.556±0.003g/cm³ 9.8cm 2.7cm
--	---

材料定数(langasite, LGAS0.9結晶)

at room temperature

	<i>s</i> ₁₁ ^E	<i>d</i> ₁₁	$\boldsymbol{\varepsilon}_{11}^{\mathrm{T}} / \boldsymbol{\varepsilon}_{0}$	<i>k</i> ₁₂	g_{11}
Langasite	9.14	6.075	19.39±0.6	15.34	35.38
LGAS0.5*	8.80	6.110	18.46	16.2	37.38
LGAS0.9	9.39	6.188	18.31 ± 0.4	15.86	38.18

 s_{ij} : elastic compliance constants [10⁻¹² m²/N] d_{ij} : piezoelectric strain constants [pC/N]

 $\varepsilon_{ii}/\varepsilon_0$: relative dielectric coefficients [-]

LGAS0.9の圧電定数d1はランガサイトより大きい

*Kumatoriya et al. J. Cryst. Growth 229 (2001) 289

AI置換ランガサイトに関するまとめ

燃焼圧センサー材料候補としてLa₃Al_xGa_{5-x}SiO₁₄結晶を作製し、 その結晶評価と高温における電気的特性評価を行った。

→ 結晶作製

チョクラルスキー法にてLangasite、LGAS0.9結晶の作製に成功

結晶評価
 Al置換により耐腐食性が向上

● 高温特性評価 <u>高温圧電特性評価より</u> Langasite結晶とLGAS0.9結晶の圧電定数は温度に対する変化が同等 <u>抵抗率温度特性より</u> LGAS0.9の抵抗率は高温でランガサイトに比べ約1桁高い

ceramics Nano

C Phonon cs

Phonon cs

TOKYD TECH

4.0 5.0 5.5 1.0 2.0 3.0 x in LTGAx

• : LTG Phase \bullet : LaAlO₃+Ta₂O₅ • :LTG+LaAlO₃+Ta₂O₅ **X** :Molten

1450

такуа тесн

0.0

Ceramics Nano Phononics

LTGへのAI固溶限界量はx=2.0

LTGAx (x=0.0, 0.3, 0.5, 0.6, 1.0) 結晶作製

AI置換量x=0.5まで単結晶作製が可能

但し、より詳細な検討が必要

ceramics Nano

点群32の材料定数と測定用カット

材	料	定	数	測	定	結	果
---	---	---	---	---	---	---	---

Ζ					
e a b			LTG	LTGA0.3	LTGA0.5
		а	8.239	8.231	8.222
	Lattice constants [A]	с	5.126	5.118	5.117
45°	Mass density [g/cm ³]	$ ho_{ m m}$	6.134(4)	6.064(4)	5.998(6)
$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ &$	Elastic compliance constants [×10 ⁻¹² m²/N]	s_{11}^{E}	9.06(2)	9.08(3)	9.09(1)
		s_{12}^{E}	- 4.64	- 4.67	- 4.68
		s_{13}^{E}	- 1.95	- 1.97	-2.02
		s_{14}^{E}	- 3.54	- 3.58	-3.70
		s 33 ^E	5.18	5.19	5.27
		s ₄₄ ^E	21.9	21.8	21.8
		s ₆₆ ^E	27.4	27.5	27.6
	Piezoelectric constants [pC/N]	<i>d</i> ₁₁	6.62(3)	6.62(5)	6.63(2)
		- d ₁₄	3.68	4.03	4.19
点群32 材料定数測定用 振動子	Relative dielectric constants [-]	$\mathbf{\epsilon}_{11}^{T}/\mathbf{\epsilon}_{0}$	20.0(2)	19.9(2)	19.8(2)
共振ー反共振法		$\mathbf{\epsilon_{33}}^T/\mathbf{\epsilon_0}$	79.9	72.0	67.9
インピーダンスアナライザ (HP 4194A)				Cer	amics Nand Phononic

AI置換LTG結晶の圧電定数d₁₁ー温度特性

抵抗率の400°Cにおける経時変化

Arアニール後LTG

Arアニール後LTGA0.5

まとめと今後の展開

圧力センサー用材料に適した結晶は?

結晶作製の容易さ 圧電特性の温度依存性 抵抗率の温度依存性

▶を総合的に見れば

現在のところ AI置換LTG結晶 が適している

ただし、大型結晶作製条件が整えられれば

オーダー型ランガサイト系結晶 GaPO₄ (900℃までの使用) が候補となる

今後の展開

AI置換LTG結晶を極低酸素濃度下で作製し、さらなる高抵抗化を狙う

